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SUMMARY 
An existing two-dimensional method for the prediction of steady-state incompressible flows in complex 
geometry is extended to treat also compressible flows at all speeds. The primary variables are the Cartesian 
velocity components, pressure and temperature. Density is linked to pressure via an equation of state. The 
influence of pressure on density in the case of compressible flows is implicitly incorporated into the extended 
SIMPLE algorithm, which in the limit of incompressible flow reduces to its well-known form. Special 
attention is paid to the numerical treatment of boundary conditions. The method is verified on a number of 
test cases (inviscid and viscous flows), and both the results and convergence properties compare favourably 
with other numerical results available in the literature. 
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1. INTRODUCTION 

Most of the traditional numerical methods developed for compressible flow simulation use an 
unsteady form of the Navier-Stokes or Euler equations.'-6 These methods use density as the 
primary variable and pressure is determined via an equation of state. Their application in cases of 
incompressible or low Mach number flows is questionable, since in that situation the density 
changes are very small and the pressure4ensity coupling becomes very weak. Some possible 
ways to surmount this difficulty lie in a fictitious equation of state or artificial c~mpressibility.~ 

On the other hand, methods for incompressible flows are mostly of the pressure correction type 
and use pressure as the primary variable.' These methods are well established, with many 
variations being possible depending upon the choice of the dependent variables and their 
arrangement, numerical grid, pressure correction algorithm, differencing schemes, etc. (cf. Refer- 
ences 8-12). 

Numerical methods which are applicable to flows at all speeds are less numerous. An 
important step in this direction was reported by Hirt et aE.,13 who used Cartesian velocity 
components stored at control volume corners and scalar variables stored at cell centres. Their 
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method suffered from oscillations due to pressure-velocity decoupling. More recently, Karki and 
Patankar14 and DemirdiiC et al.” presented solution methods based on modified pres- 
sure-velocity coupling algorithms of the SIMPLE type which include the compressibility effects 
and are applicable to flows at all speeds. Karki and Patankar14 use locally fixed base vectors, 
while DemirdiiC et a1.” use variable base vectors and contravariant vector and tensor compo- 
nents. Both methods suffer from sensitivity to grid smoothness, due to the presence (directly or 
indirectly) of curvature terms in the equations. This sensitivity is manifested by increased total 
pressure loss and kinks on the isolines wherever the grid lines change their directions. 

The present work is an extension of the finite volume method which was developed for 
predicting incompressible flows in complex two- and three-dimensional geometries.”, l 2  The aim 
was to obtain a method which: with good accuracy, stability and convergence properties, can be 
used to predict flows at all speeds. 

The primary variables are the Cartesian velocity components, pressure and temperature; the 
density is linked to pressure via an equation of state. Pressure-velocity coupling is achieved 
through a modified SIMPLE algorithm17 which now takes into account the density variation in 
a manner similar to that employed in References 14-16. The discretization is carried out on 
control volumes defined by a boundary-fitted, non-orthogonal grid. Since Cartesian base vectors 
are employed, the method is not sensitive to grid smoothness. Diffusion fluxes are approximated 
by central differences. In order to increase the stability of the computational procedure while 
preserving the numerical accuracy, central differences (CDs) are blended with upwind differences 
(UDs) when discretizing the convection terms in all equations. The contribution of CDs is kept as 
high as possible, typically above 90%. This practice leads to a good resolution of shocks while 
providing faster convergence than the first-order UDs. 

The method is verified by applying it to some one-dimensional problems and to the well- 
known GAMM test cases: inviscid flow in a channel with circular arc bump and viscous flow in 
a double-throat nozzle. Finally, as an illustration of the capabilities of the method, it is used to 
predict the Bow in one typical high expansion ratio rocket nozzle. 

2. GOVERNING EQUATIONS 

The integral, co-ordinate-free forms of the steady-state conservation equations for mass, 
momentum and enthalpy, and the equation of state, read” 

Js pV*dS=O, 

ls(pVV-T)-dS= b pbdQ, 

Is (pVh- f )  . dS = [ V *grad p + (T +PI) : grad V] dQ, 
l Q  

(3) 

p = p m  (4) 
where p represents the density, p the static pressure, I the unit tensor, V the fluid velocity, h the 
enthalpy per unit mass, T the absolute temperature, b the resultant of body forces per unit mass 
and R the universal gas constant. For a Newtonian fluid, the stress tensor T can be expressed as 
follows: 

T= -(p+$pdivV)I+2pDD, (5) 
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where p is the dynamic viscosity and D stands for the rate of strain (deformation) tensor, 
defined as 

(6) D = $[grad V + (grad V)']. 

From the momentum conservation equation (2), equations for the Cartesian velocity compo- 
nents U i  are obtained by taking a dot product with the corresponding base vector ii: 

js(pVUi--fi)*dS= - pii.dS+ pb-iidR, b b (7) 

where [see equations ( 5 )  and (6) ]  

T.i i  3 ti = p grad Ui +p(grad V)' - ii - ($p div V)ii, (8) 
and the pressure force term is separated from the rest of the stress tensor for reasons which will 
become clear in the next section. 

Following Fourier's law, the heat flux vector f is defined as 

f = k grad T, (9) 
where k is the heat conduction coefficient. An ideal gas with constant specific heats C ,  and C, is 
assumed, their ratio being y. Under these circumstances the enthalpy may be expressed as 
h=C,T, so equation (3) becomes an equation for temperature T. 

Due to the fact that all the vectors and tensors are expressed through the Cartesian compo- 
nents, there are no curvature terms in the transport equations. This fact has important implica- 
tions on the numerical solution method, as will be outlined later. 

3. NUMERICAL APPROACH 

In this section the finite volume discretization of the transport equations is briefly outlined; 
a more detailed description is available in References 10 and 12. To this end, equations (3) and (7) 
are seen as special cases of the general transport equation 

(pV# - J?+ grad 4). dS = 1 qs dR, (10) 
nC--rrJ 

Convection Diffusion Source 

where # stands for U i  or T and the diffusion coefficient r+ represents p or k, respectively. The 
continuity equation (1) has no diffusion and source terms; it will be used to derive an equation for 
the pressure correction. In other equations, all terms not appearing on the left-hand side of 
equation (10) are lumped into the source term. 

For the sake of simplicity, the discretization will be carried out in a two-dimensional space; the 
extension to three-dimensional problems is straightforward (cf. Reference 10). The Cartesian 
co-ordinates and velocity components will, for convenience, be represented by x, y and U ,  V, 
respectively. 

3.1. Discretization method 

The solution domain is subdivided into a finite number of contiguous quadrilateral control 
volumes (CV). The CVs are defined by co-ordinates of their vertices, which are assumed to be 
connected by straight lines. This simple form is possible due to the fact that the equations contain 
no curvature terms and only the projections of the CV faces onto Cartesian co-ordinate surfaces 
are required in the course of discretization, as will be demonstrated below. All the dependent 
variables solved for and all fluid properties are stored in the CV center (collocated or cell-centred 
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arrangement). A suitable spatial distribution of dependent variables is assumed and the conserva- 
tion equations (l), (7) and (3) are applied to each CV, leading to systems of non-linear algebraic 
equations. The main steps of the discretization procedure to calculate convection and diffusion 
fluxes and source terms are outlined below (more details can be found in Reference 10). 

All integrals are approximated using the midpoint rule, leading to simple second-order 
discretization. The mass flux through the cell face e (cf. Figure 1) is evaluated as 

me = pV * dS x (pV) ,  * S1, = p e (  U S ;  + W),, 

where S1, is the surface vector representing the area of the e cell face (tl =const.) and STe and 
Sl;, denote its Cartesian components. These are given in terms of the CV vertex co-ordinates as 
follows: 

The mean cell face velocity components, U ,  and V, ,  are obtained by interpolating neighbour 
nodal values in a way which ensures the stability of the collocated grid scheme (cf. Reference 12). 
The convection flux of any variable I$ can now be expressed as 

S;e=(Yn-Ys)e and S f e =  - (xn-xs )e .  

The value of +e at the cell face centre, which represents the mean value over the whole face, is in 
this study expressed through the neighbouring nodal values +p and & by a blend of the 
second-order central (CDS) and first-order upwind differencing scheme (UDS) using ‘deferred 
correction’ approach:’ 

4e = 4,””s + clg ( f$y- f$ y s ) ,  (13) 

r ) *  z, =z 
I x, = x  

Figure 1 .  Computational grid and labelling scheme 
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where the underlined part is treated explicitly and c1+ represents a blending factor between 0 
and 1 (0 = UDS, 1 = CDS). This factor is set to unity, except when oscillations at discontinuities 
require some damping and lower values (typically around 09)  are employed; see Section 4. The 
same technique can be applied to any combination of higher-order and lower-order schemes. In 
present calculations a preset value of a+ is used throughout the domain. However, the blending 
factors may in general be determined locally at each CV face and for each variable by requiring 
the solution to obey the appropriate bounds." 

The diffusion flux of q5 may be calculated as 
r 

By expressing the gradient of 4 at the cell face centre e, which is here taken to represent the 
mean value over the whole cell face, through the derivaties in t1 and t2 directions (cf. Figure 1) 
and by discretizing these derivatives with CDS, the following expression results: 

PE is the vector representing the distance from P to E, directed towards E .  SZe is the surface 
vector orthogonal to PE and directed towards positive t2 co-ordinate (cf. Figure l), representing 
the area in the surface t2 = 0 bounded by P and E. Its x and y components are 

S ; ,  = - ( yE - yp) and S$e = xE - xp, 

and the co-ordinates of the CV centre are equal to quarter of the sum of CV vertex co-ordinates. 
The underlined part of the diffusion flux (cross-derivative contribution) is treated explicitly and 
added to the source term. This part vanishes when the grid is orthogonal, since in that case 

The volumetric source term is integrated by simply multiplying the specific source at the 
control volume centre P (which is assumed to represent the mean value over the whole cell) with 
the cell volume, i.e. 

s, 'SZ =o. 

P 

The pressure terms in the momentum equations are treated as body forces and may be 
regarded as pressure sources for the Cartesian velocity components. They are evaluated as 

Q&= - pii. dS= - (grad p * ii)dSlz - [ ( p e - ~ w ) S I ~ + ( p n - ~ P s ) S ~ p l  * ii, (17) Js JQ 
where the surface vectors SlP and S Z p  represent the area of the CV cross section at l1 = O  and 
tz =0, respectively. Since CVs are bounded by straight lines, these two vectors can be expressed 
through the CV surface vectors as, e.g., SIP=$(Sle+Slw) (note that surface vectors are taken 
positive when pointing in the direction of the corresponding positive l-co-ordinate). Terms in the 
momentum equations not featuring in equation (10) are discretized using the same approach and 
added to the source term. 

After summing up all cell face fluxes and sources, the discretized transport equation reduces to 
the following algebraic equation: 
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where the coefficients A n b  contain the convection and diffusion flux contributions and Q4 
represents the source term, which includes all the terms calculated explicitly. For the solution 
domain as a whole, a matrix equation 

CAI { 41 = ( Q l  
results, where [ A ]  is the square coefficient matrix with non-zero elements only on five diagonals, 
{qb} is the column matrix of nodal variable values and { Q }  is the source term matrix. Matrix 
equations of the same form are obtained for all variables. The equations have been both linearized 
and decoupled in the course of discretization; these effects will be accounted for through the 
iteration solution scheme (cf. Section 3.4). 

In case of compressible flows, the continuity equation represents a transport equation for 
density. However, in the present method it is used to obtain a pressure correction equation along 
the lines of the SIMPLE a lg~r i thm '~  for incompressible flows. This procedure is described in the 
next section. 

3.2. Pressure-velocity-dens it^ coupling 

be written as [cf. equation (17)] 
Using the notation shown in Figure 1, equation (18) for the Cartesian velocity components may 

where Q& represents sources without pressure terms. The mass fluxes based on the velocities 
calculated from equation (19) with existing density and pressure fields do not necessarily satisfy 
the continuity equation, i.e. there exists a mass imbalance QZ: 

F.)iz-F.)i:+m* n -m*=  s Qr%. (20) 
The mass fluxes need be corrected to satisfy the continuity requirement. Employing the 

SIMPLE algorithm as a basis for pressure-velocity coupling, its compressible version is 
developed. 

In the case of incompressible flows, the mass flux correction is obtained by correcting the cell 
face velocity. However, in the case of compressible flows, relative density changes become 
~ i g n i f i c a n t , ' ~ ~ ' ~  and they have to be taken into account when deriving the mass correction 
expression in terms of velocity and density. For the sake of simplicity, this will be explained for the 
mass flux through the e cell face and Cartesian grid (STe = 0) as follows: 

m z * = [ ( p * + p ' ) ( u * +  U')Sf],, (21) 

(24  

or, in terms of the mass flux correction, 

Fiz; = ( p *  U' + p' u* + - p' U'),S?,. 

The underlined term in equation (22) will be neglected hereafter since it vanishes faster than the 
other two terms. 

Velocities at the CV faces are calculated by employing a suitable interpolation formula for the 
collocated variable arrangement used here (cf. Reference 12). For a Cartesian grid it follows that 
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where the overbar denotes interpolation from the neighbour nodal values. The velocity correction 
can be expressed in terms of the pressure corrections by using a truncated form of equation (23) 

u;=- - ( p k - p b ) .  ( 2 ) e  
Density correction can be implicitly expressed through the pressure correction in the following 
manner: 

The term dp/ap can, for an isentropic flow, be written as follows: 

where c represents the speed of sound. There are other ways to derive an expression for the term 
dpldp, depending upon the kind of flow. However, the converged solution is independent of the 
manner in which the dependency of the velocity and density corrections on pressure correction is 
defined-only the rate of convergence is affected. Introducing equations (24) and (25) into 
equation (22), it follows that 

Some important conclusions can be derived from equation (27). 
Firstly, it contains not only a term involving the pressure correction difference across the cell 

face (diffusion-like term), but also a term depending on p’ at the cell face centre (convection-like 
term). This means that a function p’ + C,  where C is an arbitrary constant, will not satisfy 
equation (27). In the case of an incompressible flow, the mass flux correction is a function of the 
velocity correction only, which, on the other hand, is a function of the pressure correction 
gradient; this is where the diffusion-like term comes from. In the case of a compressible flow, the 
mass flux correction is a function of both velocity and density corrections, and from the latter the 
convection-like term results. 

Secondly, the relative importance of the two parts of the mass flux correction depends on the 
kind of flow. If the right-hand side of equation (27) were normalized with (U*STC,)e to yield 
a weighting factor of 1 for p’,  then the first (diffusion-like) term will have a weighting factor 
proportional to ( c / U ) ~  =A!-’. Obviously, for a subsonic flow this factor is several orders of 
magnitude larger than 1, so the first term dominates and the second is negligible. For compress- 
ible flows with high Mach numbers, the contrary is true: the weighting factor of the first term will 
be an order of magnitude or more below 1, so the second (convection-like) term will dominate. As 
in the transport equations, the CDS is blended with the UDS when discretizing the convection- 
like term, i.e. the terms (C,p’),  and p,* are calculated in the following way: 

P :  = ( C , P ’ ) e  = (C,P’ EDS + a, C(C, P’EDS - ( c, p’),UDS1, 

p: = pt”DS + ap ( p 4 C D S  - pe*“DS). 

(28) 

(29) 

By introducing the above expressions into equation (27), and requiring that the mass conserva- 
tion is satisfied: 

(30) riz; -?ilk +6; -6; + Q % = O ,  
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an algebraic pressure correction equation of the following form results: 

APPL + 1 A n b P b b  = - Qz- (31) 
nb 

Here Anb has a similar form as in equation (18) and includes contributions from both convection- 
like and diffusion-like terms. However, AP is not equal to the sum of the neighbour coefficients, as 
is the case in the momentum and scalar conservation equations. This would be an undesirable 
feature in these equations, since it would mean that, all the neighbour values being equal, the 
value at node P would turn out to be different. An exception would be when all the neighbour 
values are equal to zero and the source term at node P is also equal to zero. Fortunately, the 
pressure correction equation fulfils this condition at the converged state. 

3.3. Boundary conditions 

Several different types of boundaries may be encountered in flow calculations, such as inflow, 
outflow, impermeable wall and symmetry. In the case of viscous incompressible flows, the 
following boundary conditions usually apply: 

(a) the velocities and temperature are prescribed at the inlet; 
(b) zero normal gradient for the parallel velocity component and for all scalar quantities, and 

zero normal velocity component are spedied at symmetry planes or axes; 
(c) no-slip condition and prescribed temperature or heat flux are specified at the walls; 
(d) zero (or constant non-zero) gradient of all variables is specified at the outlet. 

In the case of compressible flows, some new boundary conditions may apply: 

(i) prescribed total conditions (pressure, temperature) and flow direction at inflow; 
(ii) prescribed static pressure* at outflow; 
(iii) supersonic outflow. 

Most of the above boundary conditions are either straightforward to implement or their 
implementation is described in earlier publications.'0* In this section the last three [(i-(iii)] 
boundary conditions and their influence on the pressure correction equation will be discused. 

Prescribed total condiitions at inlet. The implementation of this boundary condition is demon- 

The total pressure is defined as1' 
strated at the west boundary (cf. Figure 2). 

and the flow angle as 

(33) 
V 
U 

tan/?=- or V=Utanfl. 

One possible way of implementing the prescribed total pressure condition at inlet would be to 
extrapolate the pressure from the interior to the boundary and calculate the velocity from (32), 

* For incompressible flows, the pressure may be specified at inflow and outflow boundaries, instead of specifying 
velocities or velocity grachents. 
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1: I 

Figure 2. On the implementation of the prescribed total-pressure boundary condition for CVs along the west boundary 

treating the velocity thus obtained as specified for one SIMPLE iteration. The temperature is 
assumed to be either directly specified or calculated From the prescribed total temperature: 

However, this approach leads to poor convergence of the solution process. Better convergence 
properties are achieved by using the following practice, which incorporates implicitly the 
influence of pressure on the velocity. l4 

At the beginning of one outer iteration (see Section 3.4), the velocities at the inlet (west) 
boundary, U ,  and V,, are calculated from equations (32) and (33) using the available pressure 
and temperature values. These values are used in the momentum equations as specified boundary 
velocities, i.e. treated as known for the current iteration. However, the mass fluxes at the inlet 
boundary, which are used to approximate the convection fluxes, are not based on this velocity but 
are calculated such that the mass conservation is assured, as will be explained below. Upon 
solving the momentum equations for ci* and V*, the new mass fluxes are calculated throughout 
the solution domain, using the newly calculated velocity components. The new inlet mass fluxes 
are now calculated using the velocities ci, and V, defined above. In the SIMPLE procedure, the 
inlet mass fluxes are also to be corrected; the correction is invoked by correcting the velocity 
alone, assuming that the density is either prescribed or treated as such within one outer iteration. 
The velocity corrections are expressed via pressure correction as follows: 

u b = ( p )  au* p',  V,=U;tanP. 
W 

The coefficient ( JU */Jp), is obtained from equation (32): 

yRT* 

yRT* 

(35) 
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The boundary mass flux correction is expressed as a function of the boundary pressure correction 
as follows: 

- 

where p ;  is obtained by extrapolating the pressure correction from interior nodes, i.e. it is 
expressed as a linear function of p b  and p ; .  Thus, the coefficients for the P and E nodes in the 
pressure correction equation are corrected along the inlet boundary according to the above 
expression. 

Upon solving the pressure correction equation, the velocities, the pressure and the mass fluxes 
are corrected throughout the solution domain, including the inlet boundary. The corrected mass 
fluxes are used to calculate the convection fluxes in all equations in the following outer iteration. 
The velocities at the inlet boundary are, however, now calculated from equations (32) and (33) to 
serve as prescribed boundary velocities in the next iteration. At convergence, the mass flux 
correction will be zero so that the velocity thus calculated will also define the mass flux through 
the inlet boundary. 

The above implementation of the total conditions at the inlet was used in all calculations of 
nozzle flows presented in the next section. It proved to be stable and of good convergence 
properties. 

Prescribed static pressure. The east boundary is chosen here to demonstrate the implementa- 
tion of this boundary condition (cf. Figure 3). It is assumed that the velocities --and in the case of 
an outflow boundary, other variables as well-are extrapolated to the boundary from the interior 
region. The pressure correction equation needs to be modified for the cells next to the boundary. 
The pressure correction at the boundary by definition will be equal to zero, but the velocity and 
mass flux corrections will be non-zero until the converged solution is obtained. 

The velocity components at the boundary nodes are calculated in a similar way as in equation 
(23), namely, 

e 

Figure 3. On the implementation of the prescribed static-pressure boundary condition for CVs along the east boundary 
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which results in the following expressions for the velocity corrections: 

The factor 2 results from considering a CV centred around boundary location e (which is identical 
to E) and assuming that the pressure difference across it is twice the difference pE-pp. The mass 
flux correction is calculated as [cf. equations ( 1  l), (21) and (22)] 

where the overbar denotes values which are obtained by extrapolation. The density and its 
correction are treated according to equations (28) and (29), where the CDS value is the one 
obtained for the boundary node E by extrapolation, and the UDS value is that of the cell centre P. 
The resulting modifications for the coefficients of nodes P, E and W in the pressure correction 
equation are easily derived from the above expressions. 

While in the case of a compressible flow the condition of prescribed static pressure can be 
applied at exit boundaries only, in the case of incompressible flows it can be applied at both inlet 
and outlet boundaries. The corresponding expressions for the velocities and mass fluxes at 
boundaries can be derived from those given above by setting the density correction to zero. If the 
static pressure is prescribed at both inlet and outlet in an incompressible flow, the velocities 
cannot be prescribed at any of these boundaries as the mass flow rate is directly proportional to 
the pressure difference and cannot be separtely enforced. At low Reynolds numbers the above 
procedure leads to rapid convergence. As the Reynolds number increases, the rate of convergence 
becomes lower. Obviously, static pressures at inlet and outlet cannot be prescribed for an inviscid 
flow. 

It should also be noted that this boundary condition allows both inflow and outflow to be 
present at the same boundary, as the flow direction is not prescribed. In case of a severely 
non-orthogonal grid at the boundary, it may be necessary to incorporate the effect of the pressure 
gradient along the boundary [cf. equation (38)] in the mass flux corrections.’’ 

Supersonic outlet. If supersonic conditions prevail at the exit boundary, all variables there 
must be determined by extrapolation from interior of the solution domain.” The velocity 
and mass flux, as well as their corrections, are obtained in the same way as in the case of 
a specified pressure at the outlet [cf. equations (38)-(40)]. However, since the pressure is not 
specified but is also extrapolated, the pressure correction at the boundary node, pk,  is not zero as 
in the former case. It is expressed here as a linear function of pb and pb, and the coefficients of the 
pressure correction equation have to be modified accordingly for the next-to-boundary cells. The 
implementation of this boundary condition, as well as those applied at the walls and symmetry 
planes or lines, is straightforward and will not be discussed further. 

3.4. Solution method and its properties 

The flow governing equations are solved iteratively using the segregated approach. For each 
transport equation, a system of linear algebraic equations is obtained. These are solved in turn by 
applying the Stone’s’’ solver based on ILU decomposition. Keeping the coefficients in the 
algebraic equations fixed, one to ten iterations are performed (inner iterations). Typically, only 
one iteration is performed for the velocities and temperature, and in the pressure correction 
equation, iterations are stopped when the sum of the absolute residuals over the whole solution 
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domain has fallen about one order of magnitude, or the prescribed maximum number of inner 
iterations has been reached. The equation of state is used to update the density after the new 
solutions for temperature and pressure are obtained. 

After one cycle of inner iterations has been performed for each variable, the coefficients of the 
algebraic equations are updated using the newest values of all variables (outer iterations). In this 
way the non-linearity and coupling of equations is accounted for. Convergence of the solution 
process is checked each time the new coefficients have been assembled, by calculating the 
residuals using the new coefficients and the old variable values. The iterations are stopped when 
the sum of the absolute residuals for each variable has fallen a prescribed number of magnitudes 
or when the normalized sums are smaller than a prescribed small number. In addition, variable 
values at a point located in a sensitive flow region are monitored; they should not be changing at 
the prescribed number of leading figures from iteration to iteration when the solution process is 
stopped. 

It should be noted here that the pressure correction equation requires less inner iterations (1-3) 
in the case of a compressible flow than for incompressible flows (4-10). In the latter case, one is 
solving basically a Poisson equation (symmetric coefficient matrix) with Neumann boundary 
conditions on all boundaries, which converges slowly. In the former case, the convection-like 
contribution makes the coefficient matrix in the pressure correction equation highly asymmetric, 
and the boundary conditions are of the Dirichlet type where pressure is specified, which results in 
faster convergence. 

The advantages of the present solution method over schemes which employ staggered grids 
and/or grid-oriented velocity components as dependent variables lie in its simplicity and robust- 
ness. The discretization is of second order and the method is not very sensitive to grid smooth- 
ness, discontinuities on boundaries and the Reynolds number (for the same geometry and 
computational grid, the rate of convergence does not differ much over the range from low 
Reynolds number incompressible flows to supersonic flows). The fact that only one set of CVs is 
used makes adaptation of grid to boundaries easy, as well as the implementation of multigrid 
methods, block-structured grids and parallel computing. The method is easily extended to 
three-dimensional and unsteady flows as well as to unstructured grids of arbitrary CV shape. 

The simplicity of the method is largely lost if a consistent discretization of an order higher than 
second is sought, since the approximation of CV surface fluxes then becomes more complicated. 
One of the drawbacks is that the pressure at boundaries is always required in the integration 
process, as CVs of all velocity components are always boundary-fitted. Simple extrapolation of 
pressure from the interior has proven efficient and accurate enough in all cases studied so far. 

It should also be noted that in the present cell-centred scheme all interpolations are carried out 
in physical space (no co-ordinate transformation is involved). The CDS approximation of 
convection fluxes is then of second order on both uniform and non-uniform grids, unlike in some 
other cell-centred schemes which interpolate on uniform, transformed grids, and therefore 
become less accurate when the grid is n~n-un i fo rm.~~  All grids used in the calculations reported 
in the next section were non-uniform (finer near wails and in areas of expected large variation of 
gradients). 

4. APPLICATION OF THE METHOD 

Applications of the method to incompressible flows are documented in other publica- 
tions.''. 2, 24 Attention will therefore be focused here on compressible flows. Several represent- 
ative test Cases for inviscid and viscous flows are presented below, 
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4.1. Inviscid test cases 

One-dimensionalflows. First calculations with the present solution method were performed for 
some standard one-dimensional (1D) compressible flow problems which are often found in the 
literature. In all cases, solutions of comparable accuracy to the reference literature solutions were 
obtained. Particular attention was paid to the prediction of compressible flow through a 1D 
nozzle. As is well known, there exists a ‘forbidden’ range of inlet Mach numbers which cannot be 
realized in practice, due to the fact that the nozzle will choke as long as the sonic line is present in 
the throat. As BoSnjakoviCZ5 described it, should someone be trying to pull a nozzle through the 
air at a velocity which would correspond to an inlet Mach number within this range, a shock will 
appear immediately before the nozzle and reduce the inlet viscosity so that the limiting case is 
reached. 

Here calculations were peformed for a converging-diverging 1D nozzle whose cross-sectional 
area varies as 

where Si =2.035 and Sth= 1 are the inlet and throat areass, respectively, and 0 5 x 5  10. A wide 
range of inlet Mach numbers was used, resulting in the pressure and Mach number distributions 
shown in Figure 4. The lower critical line is reached at an inlet Mach number of 0.3. For all inlet 
conditions leading to Mach numbers up to 2.2167, the same solution was obtained: a sudden drop 
of Mach number resulted immediately after the inlet. Specifying all variable values at the inlet so 
as to impose an ‘invalid’ Mach number implies to only setting a total pressure level: the solution 
obtained will be the one corresponding to that level and following the lower limit on Mach 
number. Only for inlet Mach numbers above 2.2167 is supersonic flow obtained in‘the whole 
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Figure 4. Comparison of distributions of Mach number (a) and pressure (b) for one-dimensional inviscid nozzle flow: 
solid line-analytic solution, symbols--calculation 
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nozzle, giving the pressure distributions shown in the lower portion of Figure 4(b). The solution 
method is thus behaving in a ‘natural’ way and not allowing unphysical solutions to be obtained. 

Flows over circular arc bump. Three different types of flow (subsonic, transonic and supersonic) 
in a channel with a circular arc bump were chosen as further validation tests for inviscid flow 
calculations. The width of the channel is equal to the length of the bump, and the channel length is 
equal to three lengths of the bump. In all three cases, the grid is symmetrical left and right from 
the middle of the bump. For subsonic and transonic calculations, the thickness-to-chord ratio is 
10% and for supersonic flow calculations it is 4%. These are the standard test cases proposed at  
the GAMM conferencez6 and used by many investigators4* 14* 15* ”, **  to check the accuracy and 
stability of the numerical method used. 

Due to the fact that the enthalpy equation for inviscid flows can simply be expressed as 

(41) 

where k, represents total enthalpy per unit mass, the enthalpy conservation equation (3) is not 
solved and the temperature is calculated directly from equation (41). 

A subsonic flow regime is considered first. At the inlet, it is assumed that flow has uniform 
properties and the upstream far-field variable values (except for pressure) are specified. At the 
outlet, all variables are extrapolated except for pressure, which is prescribed. At the upper and 

IVI’ k, = C,T+--, 
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Figure 5. Predicted Mach number contours (a) and profiles along the walls (b) for subsonic inviscid flow through 
a channel with a circular arc bump in one wall, using a grid with 224 x 56 CV and 95% CDS. Contour levels: from 0.295 

(at bump corners) to 0.685 (at bump top); step 0.015 
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lower wall, the flow tangency condition and zero mass flux through the boundary are prescribed. 
For a given Mach number at the inlet, Mi, =05, grid dependence tests were performed for four 
systematically refined non-uniform grids, from 28 x 7 to 224 x 56 CV. For all grids the CDS was 
blended with 5% UDS. In Figure 5(b), the Mach number distribution along the upper and lower 
wall calculated on all grids is presented. As there are no shocks in this case, a symmetrical 
solution must result. Even in the case of the coarsest grid with 28 x 7 CV, the total pressure error 
is relatively small. On the finest grid the error is below 0.25%. These results compare favourably 
with those found in many other publications, e.g. in References 14 and 29. In Figure 5(a), the 
isomach lines are shown as predicted on the finest grid. The fact that the grid lines suddenly 
change their direction at the beginning and end of the bump causes no disturbance to the isobars 
as is the case in solution methods employing grid-oriented velocity components.14* 

Next, transonic flow was considered. The grid arrangement and the treatment of boundary 
conditions are identical to those described for subsonic flow. For the given inlet Mach number 
Mi, =0.675, the Mach number distributions along the walls and isomach lines as predicted on the 
finest grid are shown in Figure 6. For all grids the CDS was blended with 10% UDS. The 
captured shock spreads over three grid points on all grids. The maximum Mach number 
immediately before the shock is 1.43. These results also correspond to reference solutions from the 
l i t e r a t ~ r e . ~ ’ ~ ~  As Figure 6(b) suggests, the discretization error on the finest grid (224 x 56 CV) is 
fairly small; further grid refinement would only affect the resolution of shock and peaks at 
bump ends. 
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Figure 6. Predicted Mach number contours (a) and profiles along the walls (b) for transonic inviscid flow through 
a channel with a circular arc bump in one wall, using a grid with 224 x 56 CV and 90% CDS. Contour levels: from 0.34 

(at bump corners) to 1.42 (at shock): step 0.04 
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Finally, supersonic flow was analysed. For the given uniform Mach number at the inlet, 
Mi, = 1-65, and for the used geometry, the flow is also supersonic at the outlet. For that reason all 
variables are prescribed at inlet, and at outlet all variables are extrapolated. In Figure 7 the Mach 
number distribution and isomach lines are shown, as predicted on a non-uniform 160 x 80 CV 
grid using a blend of 90% CDS and 10% UDS. Two oblique shocks are formed at both corners of 
the bump. The leading edge shock reflects from the top wall and intersects with the shock leaving 
the trailing edge. All shocks are resolved fairly well, although at this stage no effort was made to 
increase the shock resolution and the reflecting one is somewhat smeared. It is interesting to note 
that the shock position does not change with grid refinement [cf. Figure 7(b)]; only the steepness 
of the shock is improved, with the lines calculated on various grids intersecting at almost the same 
point. Figure 8 shows isomach lines for the flow under the same conditions, but with two bumps. 
As can be seen by comparing Figures 7 and 8, the second bump does not influence the flow 
upstream of it. This indicates that the solution method correctly reproduces the hyperbolic nature 
of the flow. 

With 10% UDS blended with CDS, there are still some oscillations in the solution at locations 
where a sudden change in gradients occurs. This is a feature of all higher-order schemes. The 
oscillations are usually centred around the accurate solution and are reducing with grid refine- 
ment in both wavelength and amplitude. Figure 9 shows isomach lines for the above flow 
obtained using pure CDS for all convection terms. It indicates very good resolution of shocks, but 
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Figure 7. Predicted Mach number contours (a) and profiles along the walls (b) for supersonic inviscid flow through 
a channel with a circular arc bump in one wall, using a grid with 160 x 80 CV and 90% CDS. Contour levels: from 1.26 

(after shock, upper wall) to 2.02 (before shock, lower wall); step 0.02 
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Figure 8. Predicted Mach number contours (a) and profiles along the walls (b) for supersonic inviscid flow through 
a channel with two circular arc bumps in one wall. Conditions and contour levels as in Figure 7 

Figure 9. Predicted Mach number contours for supersonic inviscid flow through a channel with a circular arc bump in 
one wall, using a grid with 160 x 80 CV and pure CDS. Conditions and contour levels as in Figure 7 

also pronounced oscillations. In order to avoid oscillations while retaining good resolution of 
shocks, blending of UDS with CDS should be done locally, as was done by Perii:” for some 
simple scalar transport problems, instead of the global blending used here. This and other 
possibilities for improvement of shock resolution will be considered in future studies. 

For the wall inclination angle of 9.14“ at the beginning of the bump, a shock appears for inlet 
Mach numbers greater than approximately 1-37 (cf. Reference 19). When inlet Mach numbers are 
below this critical value, no shock is formed and the bump causes the flow to behave as in a nozzle 
(since the upper wall in an inviscid case can be replaced by a symmetry plane of a 2D nozzle). This 
means that bump will choke the flow, as discussed for the 1D example nozzle. Specifying inlet 
conditions such that Mach numbers lie in the ‘forbidden’ range causes a shock-like drop of Mach 
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number immediately after the inlet, and the flow follows the lower critical line (for this geometry it 
occurs at an inlet Mach number of 0.8). 

4.2. Viscous test cases 

Flow in a double-throat nozzle. Flow in a double-throat nozzle was used as a validation test 
case for viscous flow calculations. Flow conditions and geometry are well described by Bristeau et 
aL3* At the inlet, total pressure and total enthalpy are prescribed. At the outlet, all variables are 
extrapolated. At the wall, the temperature is set equal to the total temperature. For this test case 
the full CDS scheme is used for all variables. Figure 10 presents Mach number contours for the 
flow at Reynolds number Re= 1600, as predicted on a grid with 640 x 80 CV (a) and centreline 
profile of Mach number as a function of grid fineness (b). Solutions on the two finest grids differ 
appreciably only near the exit, where the effect of better resolution of the shock reflection can be 
observed. The position of shocks and the peak values of Mach number of the centreline are in 
good agreement with reference solutions presented in Reference 30. 
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Figure 10. Predicted Mach number contours for a supersonic laminar flow at Re = 1600 in a double-throat n o d e  using 
a grid with 640 x 80 CV and pure CDS (a) and centreline profile of Mach number as a function of grid fineness (b). 

Contour levels: from 0.06 (inlet) to 2.88 (outlet); step 0.06 
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Figure 1 1 .  Predicted Mach number contours for supersonic laminar flow in high-expansion rocket nozzle using a grid 
with 256 x 80 CV and 95% CDS. Contour levels: from 0 4  (inlet) to 8.0 (outlet); step 0.2 
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Figure 12. Mach number profiles along centreline for supersonic flow in a high-expansion rocket nozzle as a function of 
a grid fineness using pure UDS (a) and 95% CDS (b) 
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Flow in a high-expansion rocket nozzle. As a further illustrative example, the prediction of the 
air flow in a high-expansion-ratio rocket nozzle has been performed. At the inlet, the total 
pressure pt = 104 bar, the total temperature T, = 3600 K and flow direction ( B  = 0) are prescribed. 
At the outlet, all variables are extrapolated. In this example the CDS was blended with 5% UDS 
for convection fluxes on the finest grid (256 x 80 CV) for all variables. The flow is characterized by 
very high Mach numbers without shocks. The inlet pressure is 100 bar and at the outlet it is 
0.0108 bar. The Mach number varies from 0.239 at the inlet to over 8 at the outlet. In Figure 11, 
the calculated isomachs are presented. A compression wave can be seen downstream of the 
throat: below it, the Mach number is almost constant in the cross section, and rises steadily in the 
axial direction: above it, the Mach number suddenly drops. This is a typical feature of nozzle 
flows and can be seen in many similar predi~tions.~’,~’ 

Figure 12 shows the Mach number profile along the centreline as predicted on various grids 
using a pure UDS (a) and using 95% CDS and 5% UDS (b). This result indicates the inadequacy 
of the first-order upwind scheme for the prediction of complex flows: the solution on the finest 
grid with pure UDS is less accurate than the solution on the coarsest grid when 95% CDS is used! 
The discretization error on the finest grid is around 7% for pure UDS and only around 0.3% for 
the CDS with 5% UDS damping. 

Figure 13 shows the convergence properties of the solution method on a 256 x 80 CV grid, 
using 95% CDS and 5% UDS. The calculation was started using initial variable values obtained 
by extrapolation from the solution on the next coarser grid. The normalized sums of absolute 
residuals for the momentum, temperature and continuity equations are shown as a function of the 
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Figure 13. Convergence of the solution process for the supersonic laminar flow through a high-expansion rocket nozzle 
on a grid with 256 x 80 CV 
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number of iterations performed. All residuals are falling steadily at a constant rate. Each order of 
magnitude reduction corresponds approximately to an accuracy improvement of one significant 
figure in variable values. For practical applications, four-digit accuracy is sufficient, meaning that 
about 300 iterations would have been necessary in the above case. The rate of convergence is 
influenced strongly by the oscillations of the solution at the edge of the compression wave. By 
using 60% CDS and 40% UDS, the oscillations are dumped completely and the number of 
required iterations reduces by almost a factor of three. 

5. CONCLUSIONS 

The analysis presented in the previous sections allows the following conclusions to be drawn: 

(a) The present method is based on the SIMPLE like pressure correction algorithm and can be 
used to calculate flows at all speeds. It is self-adaptive to the type of flow and in case of 
incompressible flows it reduces to its standard form, which is-in several variants-being 
used widely by many authors. Since the collocated variable arrangement and Cartesian 
velocity components are used, there are no curvature terms in the momentum equations 
and the solutions are not as sensitive to grid smoothness as they are when grid-oriented 
velocity components are used. 

(b) In an extensive testing of the method it was found to be stable and have good convergence 
properties. In incompressible flows, zero fields are used usually to initialize the variables, as 
the rate of convergence and the total computing time are usually not very dependent on the 
choice of these values. For compressible flows, it is desirable to have a more reasonable 
guess of the pressure and velocity distributions. It was found advantageous to use a 
sequence of systematically refined grids even without the multigrid algorithm, for the 
possible difficulties with initial conditions are then limited to the coarsest grid only. Since 
the computing time on the coarsest grid is very short, one can afford to use heavier under 
relaxation and other stabilizing techniques. The solution on each grid is used to obtain (by 
extrapolation) the starting fields on the next finer grid, thus providing a very good initial 
solution. In addition, a series of solutions on systematically refined grids is useful for 
estimating the level of discretization errors, since these are proportional to the difference 
between the solutions on two consecutive grids.33 

(c) The present method is found to capture shocks automatically at the right locations on all 
grids. The grid refinement improves the resolution of shocks, but their position was not 
changing during this process in all calculations performed so far. 

(d) The use of the central differencing scheme for convection fluxes, blended with a small 
proportion of the first-order upwind scheme, was found to result in a small total pressure 
loss and acceptable resolution of shocks. Both features can be improved further by 
calculating the blending factor locally (e.g. in a manner described by PeriC'O). 

The results presented here were all limited to two-dimensional flow problems. The solution 
method, however, can easily be implemented in any three-dimensional solution procedure using 
algorithms of the same kind. Computational efficiency can be improved further by implementing 
a multigrid solution algorithm of the kind presented in Reference 33. 
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